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Abstract—Transient elastodynamic nonplanar self-similar Mode 111 crack growth in brittle ma-
terials 1s examined. The dynamic similarity and Chaplygin’s transformation reduce the class of
problems considered to the solution of Laplace’s equation in a semi-infinite strip. The Schwarz—-
Chnistoffel transformation 1s subsequently employed to map the semi-infimte strip on a half-
plane. The theory of analytic functions can then be used. Elastodynamic influences in the
vicinity of a rapidly moving tip after branching are examined in a rather general fashion.

To reveal the sensitivity of one branch's crack tip elastodynamic stress intensity factor to
the relative velocity and orientation of the other, the problem of asymmetric crack bifurcation
under stress wave loading is chosen for study. The development of specific analytical solutions
requires the solutions to the symmetric bifurcation problem subjected to loading that induces
either antisymmetncal or symmetrical deformations, respectively, about the original crack
plane. For asymmetric geometries the solution required the numerical evaluation of several
integrals in the final stages. It 1s ultimately shown that the stress intensity factor of one branch
is sigmficantly altered by changes in the velocity and orientation of the other and by the angle
of stress wave incidence.

i. INTRODUCTION

Dynamic fracture in brittle solids is characterized by the rapid attainment of high crack
tip velocities and the tendency thereafter to branch, propagate further and branch, and
so on (Schardin[1]; Clark and Irwin[2]; Dally[3]). An interesting high-speed photomi-
crographic study of the evolution of crack branching by Ravi-Chandar and Knauss{4]
revealed that there is no single instant of crack branch initiation and that there are
multiple branching attempts made by the propagating crack. A marked increase in
surface roughness usually heralds crack branching. Present elastodynamic treatments
have great difficulty incorporating any of the microscopic details and the fact that
nonsynchronous branching occurs. The approximations to planar deformations and
through-the-thickness straight-front crack propagation are therefore not unreasonable.
The assumption that small-scale yielding conditions prevail is also not unreasonable
since brittle fracture is involved. In other words, the process zone—the region in which
the crack rapidly curves—is assumed to be small in size with respect to any charac-
teristic length in the problem. The latter assumption is valid for glass and rock as well
as the not-so-brittle materials such as polymers and steel that are subjected to low-
temperature environments and/or high rates of loading. Analytically the process zone
is modelled as a point, giving a well-defined instant of branching.

Dynamic crack branching has been observed in a variety of materials including
glass plates and pressurized tubes (Schardin[1], Aoki and Sakata(5]), steel plates and
pressurized steel and aluminum pipes (Hahn, Hoagland and Rosenfield(6], Congle-
ton[7], Kobayashi[8]), crystalline solids (Field{9]), rock (Bienawski[10]), and brittle
polymers such as Homalite-100 (Dally[3], Ravi-Chandar and Knauss[4], Kobayashi,
Wade, Bradley and Chiu[11], Ramulu, Kobayashi and Kang[12]). The angle subtended
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by the macroscopic branch—immediately after branching—and the onginal crack plane
typically lies between 10° to 45° for the more brittle materials that have no preferred
orientations. The speed of crack tip propagation, which is usually less than half the
shear wave speed, is not significantly influenced by the branching event.

Much of the analytical work dealing with crack branching under an arbitrary angle
with the primary crack is elastostatic in nature. For antiplane strain deformations, the
infinite body with a kinked and bifurcated crack were presented by Sih[13] and
Smith[14], respectively. The equivalent elastostatic in-plane problems were treated by
Lo[15]; multiple branching (Wilson and Cherepko[16]) and successive bifurcation (Par-
letun[17]) have been investigated using the finite element method. The slow growth of
cracks in nonuniform stress fields, with no a priori assumption regarding the path of
the crack branch, has been examined using perturbation procedures by Banichuk[18],
Cotterell and Rice[19], and Karihaloo, Keer, Nemat-Nasser and Oranratnachai{20].
There have been proposals to determine the conditions for crack branching from the
stress—strain field for the unbranched crack (the prior field). The use of the prior stress
field criteria (Maiti and Smith[21]) may be useful if the path of fracture is not likely
to cause a significant readjustment of the prior stress field.

Experimental observations of the speed of crack propagation at branching suggest
that elastodynamic effects are important. The fact that the oge stress moves out of the
plane of crack propagation and acts at an angle of about 60° to the direction of crack
propagation when the crack velocity exceeds approximately 0.6 times the shear wave
velocity (Yoffe[22], Craggs[23]) reinforces the view that inertia effects are important.

The treatment of the fast growth of cracks in nonuniform stress fields, with no a
priori assumption regarding the crack path, has as yet eluded current research efforts.
An alternative approach is to determine a necessary condition prior to crack branching
by comparing states prior to and after branching. The comparison requires expressions
for the elastodynamic field quantities near the tips of the branches. The necessary
condition can then be established, for instance, on the basis of the balance of the rates
of energies.

A problem fundamental to our understanding of the conditions for dynamic crack
branching in brittle solids is the sudden kinking or bifurcation of a running crack. In
this paper the transient diffraction of an elastic wave by an extending but bifurcating
crack is considered. The incident wave is a plane horizontally polarized wave. It is
assumed that crack division is generated at the instant that the tip of a stationary crack
is struck. The original length of the crack is therefore immatenal for small times. and
the analytical work can be simplified by considering a semi-infinite crack. Size effects
become important for later times. The two new crack tips are assumed to propagate
at different but constant velocities under different but arbitrary angles with the original
crack plane. The dependence of the elastodynamic stress intensity factors on the crack-
tip velocities and the angles of branching is examined.

The solution method used in this paper is based on the observation that for a class
of externally applied disturbances the particle velocity is self-similar within the circular
regions of the diffracted wave. The fact that w, for constant crack-tip velocities, is a
function of #/f and 6 only allows Chaplygin’s transformation to be used, which reduces
the problem to the solution of Laplace’s equation in a semi-infinite strip containing
two slits. The Schwarz~Christoffe! transformation is subsequently employed to map
the semi-infinite strip on a half-plane. The powerful theory of analytic functions
{Muskhelishvili[24]) can then be used.

Transient elastodynamic nonplanar self-similar crack growth solutions have only
recently been obtained. Burgers and Dempsey[25] solved the symmetric crack bifur-
cation problem in antiplane strain for a specific angle, while Dempsey, Kuo and Ach-
enbach[26] solved the Mode 11l crack kinking problem for stress wave loading. The
latter solutions provided much-needed check cases for the numerical method being
applied by Burgers[27, 28] and Burgers and Dempsey[29]. Skew crack propagation
{Achenbach and Varatharajulu[30]) and crack bifurcation (Achenbach|31, 32],
Freund{33]) were first examined a decade ago; these studies helped to establish the
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viability of the approach used in the more recent studies mentioned above and 1n this
paper.

In Section 2, self-similar solutions to the class of problems considered are for-
mulated and the elastodynamic influences on the stresses and the particle velocity in
the vicinity of a rapidly moving crack tip are examined in a rather general fashion. The
universal spatial dependence of the near tip stress field and particle velocity field is
revealed, as is the fact that the only problem-dependent quantity is the stress intensity
factor. The problem of asymmetric crack bifurcation under stress wave loading is for-
mulated in Section 3. Symmetric crack bifurcation under loading conditions that induce
solely antisymmetric or symmetric deformations is solved in Section 4, prior to solving
for symmetric crack bifurcation under stress wave loading (with equal crack-tip
velocities). The general asymmetric crack bifurcation problem is solved in Section 5 for
stress wave loading. To gain an increased understanding of the dynamic crack branching
mechanism, and also to examine the attempted branching during the planar phase of
crack propagation, several asymmetric bifurcation geometries are chosen. The objec-
tive is to determine the sensitivity of one branch’s crack-tip elastodynamic stress in-
tensity factor to the relative velocity and orientation of the other. Elastostatic studies
that have had a similar purpose include those by Parletun[17] and Kalthoff]34].

2. SELF-SIMILAR SOLUTIONS

In a stationary system of polar coordinates (r, 8), two-dimensional antiplane wave
motions are governed by

19 [ aw 1w 1
——lr=)+ 55— ==w, .
ror (r ar) r? 0e? czw @b

where w(r, 0, 1) 1s the out-of-plane displacement, (') = d/df, and ¢ = (u/p)'’? is the
velocity of transverse waves. The relevant shear stresses are
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(2.2a,b)

For geometrical configurations without a fixed characteristic length and with appro-
priate boundary conditions, either w(r, 6, f) or w(r, 6, 1) may display the property of
self-similarity. In this paper, we will consider cases in which the particle velocity, w(r,
0, 1), is self-similar. This implies that w depends on r/t and 0, rather than on 6, r and
t separately. On introducing the new variable s = r/t, the equation for w(s, 8) follows

from (2.1) as
2 2.3 2 A 2%
2 _ S\ 9w _\ow &tw
5 (l c2) preaa) (l c2> + 0. (2.3)

For s < ¢, Chaplygin’s transformation B = cosh~'(c/s) reduces (2.3) to Laplace’s
equation

?w W i fc
e + o s 0, B = cosh (;) . (2.4a,b)

The real transformation given by (2.4b) maps the interior of the physical domain into
a semi-infinite strip in the y-plane. In this plane the harmonic function w(B, 8) can be
taken as the real part of an analytic function G(y), y = B + i8. Formally, G(y) can
be obtained by conformal mapping techniques, whereby the domain in the y-plane is
mapped on the upper half of the [-plane by means of a Schwarz-Christoffel
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transformation:
Y=o, {=§+imn (2.3a,b)
In the {-plane the solution 1s of the form
w = Re F({), (2.6)

where F({) must be obtained from the boundary conditions on the real axis. By the
use of (2.6), (2.2) and (2.4b), the stress components are given by

- iy L3V BT] oL

7. = p Re fm [F @ &5 ar] di + 12, Q2.7
. ! tey dz a'.y : w

ro. = 2 Re fm [F O ae] di + 1, 2.8)

where 1, and T4, are the values of 1,, and 1e, for r > ct.

The crucial part of the analysis of any self-similar problem is the derivation of
F'({). The completeness of this function must be established: terms which violate the
boundary conditions or introduce inadmissible singularities must not be included. The
relationship between { and the physical coordinates r/r and 0 given in (2.5a) is generally
not invertible for problems involving dynamic crack branching. The incorporation of
the appropriate singular behavior in a particular problem through F'({) hinges upon
establishing the relations between small distances from the crack tip in the physical
plane, in the y-plane, and in the {-plane.

Without discussing a particular problem at this stage, consider a crack that starts
propagating at ¢ = 0 with constant velocity, v, from the origin of a Cartesian coordinate
system in the x, y-plane under an angle xm with the x-axis. At any instant, the length
of the crack is vi, and its motion can be described by the conventional cylindrical
coordinates r, 0, z centered at the ongin, or the coordinates p, ¢, z centered at the
crack tip (Fig. 1).

For small values of p/ut (see Fig. 1) the following relations can be derived, using
m = vlc,

0 — km ~ (p/ut) sin(d), (2.9a)

r — vt ~ p cos(d), (2.9b)
Jut

B - B~ - EOEE (2.9¢)

We find from (2.5a) that for | { — &p| <1 and x # 0

Y — Yo ~ w2l — Ep)N2, (2.10)

where w; is a constant that depends on the particular mapping used and yp = Bp +
ixw. Equations (2.9¢c) and (2.10) give for p/vt small and x # 0

L — &b ~ (pvt)'?[Z\(d, m) + iZ2(d, m)]Q(k, b, m), (2.11)
where
Zi(b, m) = sgn(d)[1 — m? sin®(d)]'? — cos(P)}'?/[1 — m? sin*($)]'2, (2.12a)

Zy(b, m) = {[1 — m?sin?($)]'"? + cos(d)}'?/[1 — m? sin*($)}', (2.12b)
Ok, b, m) = [1 — m? sin®(d)]"*/wi?(1 — m?)'4. (2.12c)
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Fig 1. Polar coordinates centered at the moving crack tip

It is apparent from (2.11) that for x # 0 a singularity of order ( — vt)~ "2 in the particle
velocity (2.6) corresponds to a singularity of order ({ — £p)~ " in F({). In other words,
since 7o is singular as (r — v#)~*? in the vicinity of the propagating tip, then F’({) (d¢/
dy) must harbor the term ({ — &p)~> for small | { — &b .

For the class of problems under consideration, a convenient way to express F'({)
is in the form

F'({) = Fi()) + F(D), (2.13)
in which Fj({) satisfies the nonhomogeneous boundary conditions in the {-plane on the

real axis, while F3({) incorporates the singular behavior at the crack-tip. Using (2.13),
the stress components (2.7) and (2.8) can be expressed in the form

Tpe = {l1p(5, 8) + Ipp(s, O)}H(c — s) + 1p,  (p =1,0), (2.14)

in which, for k = 1 or 2,

- - T .
L= - wRe ["Fid e (2.152)
« . dld§
he=-pim | Fl g5 (2.15b)

Except for special cases, an explicit expression for { in terms of § and 6 cannot be
obtained from the Schwarz-Christoffel transformation. Before doing the above inte-
gration numerically, the singular term in /5, and /2, must be treated analytically. To
this end the integration over § is replaced by an integration over a corresponding contour
I in the {-plane. The appropriate changes of variables gives

IZr

I

E Re fr F3(b) cosh gD dF, 2.16)

Iz

%Im ﬁ Fi(D) sinh () di. @.17)

Integrating (2.16) and (2.17) by parts, the final expressions for the stress components
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are
T,-;(.S, 9) = {_ &‘._Re FZ(Z) l\=\ + %Re F2(i) |\'=(
+ Jo (s, 8) + I (s, 8)} H(c — 5) + TV, (2 18)
22\ 12
To:(5, 0) = {— k (1 - f—;) Im F2() 5=,
$ ¢
+ Jau(s, 8) + (s, 0)} H(c — s) + 734, 2.19)
in which
¢ - d§
- b 99
J=uRe [[ROS, 2.20)
‘ - ds
Ji = p Imj: F&(Om. (2.2h

Here { is considered as a functiion of §, which in general cannot be determined ex-
plicitly. For any value of § the corresponding { can be computed numerically from
(2.5a).

In any particular problem, the Mode 111 stress intensity factor must be determined

by considering the shear stress 7q; in the plane of the crack, and ahead of the crack
tip, since

Ky = lim Qm)"2(r — vt)"21e,(r > vt, 9 = k7). (2.22)
faed 14

The elastodynamic influences on the stresses and the particle velocity in the vicinity
of the moving crack tip in problems involying crack branching under dynamic loading
conditions are also of interest here. For this reason let the state of stress at point P 1n
Fig. 1 be given by both (7,., 7e;) and (7,., 7¢:), Where it can be shown that

To: = — T SIN{d — 8 + kW) + 7o COS(D — O + k7). (2.23)

Equation (2.23) along with eqns (2.18), (2.19) and (2.11), can be used to investigate the
stresses in the vicinity of the crack tip, which reveals that for small p/ut,

Toe ~ = (W) {1 = m)" Im Fy(D) |-, cos(®) — Re Fa(D) |i=, sin(d)}. (2.24)

The above equation reduces to the same expression for ail problems in the class dis-
cussed in this paper. That is, for p/vt small,

To: ~ Toe(d, m) Kinl/(2mp)'?2, (2.25)

where
To:(d, m) = {(1 = m*)™'2Z\($, m) sin(d) + Za(d, m) cos($)}2'2,  (2.26)
in which Z, »(d, m) are defined in (2.12a,b). The dependence of the local shear stress,
Te¢z. ON the problem at hand is incorporated into one term, the stress intensity factor.
The dependence of the local shear stress on the polar angle in the vicinity of the moving

crack tip is incorporated in Ty ; as shown by Erdogan{35], the maximum value of T
moves out of the plane of crack propagation (¢ = 0) as the crack velocity increases
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beyond a certain critical value (m = 372 = 0.578). Obviously, even after a crack has
branched, the maximum value of the shear stress may not be maintained in the new
plane of crack propagation. For various values of m, the variation of V2 Ty, in & is
shown in Fig. 2 of the paper by Achenbach[31] (note that ¢ in [31] is w ~ ¢ here); for
m—> 0, Ty. = cos($/2), and (2.25) reduces to the expression for static loading, 74: =
COS(¢/2) Kgn/(Zﬂ'p)“z.

An analogous result holds for the particle velocity, for which

b~ (c/w) We:db, m) Ky
(,n,p)IIZ ’

(2.27)
where

Wozld, m) = mZ\(d, m2(1 =~ m*)'2, 2.28)

The above results are not surprising since similar results were found for mixed-
mode crack propagation by Freund and Clifton[36], although in their analysis the crack-
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Fxg. 2. (a) Pattern of incident, reflected and diffracted waves for an incident honzontally po-
larized transverse wave and asymmetric crack bifurcation: an = angle of wave incidence; (b)
pattern of waves for the superposition problem: «,m = bifurcation angles, v, = crack-tip speeds.
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tip trajectory was required to have a continuously turning tangent. Even after branch-
ing, the near-tip elastodynamic fields have a universal spatial dependence on the local
coordinate system. The problem-dependent quantity is the stress intensity factor. Fur-
thermore, since the spatial dependence on the local coordinates is the same as for
planar crack propagation, the flux of energy, F, into the crack tip is also known
(Freund[37)):

(c/p)ymK fu
F A0 - ) (2.29)
The balance of rates of energies (Achenbach[32]) provides a necessary condition
for crack propagation. A criterion for crack branching follows if the energy release rate
for the branched crack is greater than that for planar crack propagation. Clearly, the
dependence of the elastodynamic stress intensity factor on the branching angle x and
crack-tip velocity v is of fundamental importance.

3. CRACK BIFURCATION UNDER STRESS WAVE LOADING

The problem to be considered in this section involves the dynamic loading of an
initially stationary, semi-infinite crack by an obliguely incident horizontally polarized
step stress wave. At the instant of the crack tip being struck (¢ = 0), two cracks
propagate out of the original crack tip, with constant subsonic crack-tip velocities v,
and v,, making angles x;% and k7 with the original crack plane, respectively. The
original crack generates a plane reflected wave and a cylindrical diffracted wave. The
pattern of wavefronts and the positions of the crack tips for r > 0 are shown in Fig.
2(a).

The reflection and diffraction of the incident wave involve horizontally polarized
motions only. The governing equation of motion is given by (2.1). The incident wave
is of the form

Wine = — (CTo/IJ.)‘TH(T), (3.1
where
T =t + (x/c) sin(am) — (y/c) cos(am) = t + (r/c) sin(famw — 0), (3.2)

and «, r and 6 are defined in Fig. 2(a). The stress 7o, corresponding to the incident
wave is

T = 1o cos(anm — 0)H(1). (3.3)

The total field [illustrated in Fig. 2(a)] can be considered as the superposition of
the incident wave in an unbounded medium and the superposition problem. The su-
perposition problem [Fig. 2(b)] concerns an initially quiescent solid which contains a
semi-infinite crack. At time ¢ = 0, two branches emanate from the crack tip, and at
the same time the old and new crack faces are subjected to crack face tractions which
are opposite in sign to the stresses induced by the incident wave. The superposition
of the fields due to the incident wave and the superposition problem renders the crack
faces free of tractions.

In this paper we solve the superposition problem. Thus, the conditions on the
crack faces are

6==a, r>0: Te: = To cos(am) H[t + (x/c) sin(am)], (3.49)
6=kmz0, r>0 Te: = — To cos(am — kym) H(t — rlvy), (3.5)
0=k =0, r>0: Tez = — To cos(am — wpm) H(t — rlva). (3.6)
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The shear tractions on 8§ = =1 generate plane waves with constant particle velocities
of magnitude = cto/p. Thus, along the segments BE and FG of Fig. 2(b) the particle

velocities are
w2 +an<0<tw, r=ct W = cToll, 3.7

-n=0< -2 ~aw, r=ct W = — CcTolp. (3.8)
The material is undisturbed ahead of the segment BG, and thus
—qR —an <8< +aw, r=ct w = 0. 3.9

Before obtaining the solution to the above asymmetric bifurcation problem, it is
desirable to solve the symmetric crack bifurcation problem (x; = —«x; = k) for the
case of equal and constant crack-tip velocities (v; = v2 = v). The latter solution is
useful both for checking purposes and for insight into the more difficult asymmetric
bifurcation analysis. Moreover, the above symmetric bifurcation problem is interesting
since it can be formulated as the sum of an antisymmetric problem and a symmetric

problem. The antisymmetric problem is defined by the conditions in (3.4), (3.7)-(3.9)
and

8= xkmw, r>0 Te; = =19 COS(am) cos(kmH(t — riv), .10

0=0, r<ecn w =0, 3.11)

The symmetric problem is defined by the loading

0=xm, r>0 Te: = 0, (3.12)
8==xxmw, r>0 Te: = F7o sinam) sin(km)H{t — rlv), (3.13)
-ns0=sm r=c w =0, (3.14)
0=0 r<ct w#0, awee = 0. (3.15)

The above problems are solved in Section 4 in considerable detail and generality. The
asymmetric problem is treated in Section 5.

4. SYMMETRIC CRACK BIFURCATION

Antisymmetrical deformations

Geometrically symmetric crack bifurcation with equal, constant crack-tip veloc-
ities and dynamic loading conditions that cause antisymmetric deformations about the
original crack plane are studied here. The boundary conditions are

g =

I+

n, r>0 Tez = TEH(t + xlu), @.1n
— 1{H(t ~ riv). 4.2)

6= xxm, r>0 Tez

Two plane waves and a cylindrical wave are generated by this loading. The pattern of
waves is shown in Fig. 2(b) (assuming that k; = ~—k2 = K, v; = vz = v). In the following
analysis it is assumed that « > c.

The dynamic shear tractions in (4.1) generate plane waves. In the regions outside
the cylindrical wavefront r = cf and behind these plane waves the particles velocities
are of constant magnitude, such that along arcs BE and FG,

. _ Elctlun

w2 + sin~YW )<= 26w r=ct = W R

4.3
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where
n = ulc, n>1. “4.4)
The material ahead of BG 1s undisturbed:
lo|<w2 + sin~'(U/n), r=ct: Ww=0, awee = 0. (4.5)
The line 8 = 0 is a line of antisymmetry:

6=0, 0<r<ct w =0, awior =0, {4.6)

As outlined in Section 2 the above antisymmetric problem is mapped from the
physical domain (0 = 8 < =, 5 =< ¢) into a semi-infinite strip (0 S 0 s 7, 0 < B < =)
in the y-plane (Fig. 3). This strip is then mapped to the upper half of the {-plane (Fig.
4) by the Schwarz-Christoffel transformation (Achenbach{32]):

- -1 1+§§M) _ _;(l"lgfv) . 47
¥ = k cosh (§+§M + (I — x) cosh N + im, 4.7

where the points €5, £ and &g can be found, for given values of k and m, by considering
the change in imaginary parts at M and N between the y-plane and {-plane, and from

-]
E

L N
w72+sinticn) 4B

a"/z -
N
mh—n—--wu “
olA M -

Fig 3 The vy-plane for symmetric crack bifurcation,

T

Fig 4 The {-plane for symmetnc crack bifurcation
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the mappings of points D and B:

k(1 — &) Em — (1 — 0) (1 ~ EX)"/EN = 0, 4.8)
vp = k cosh™'(1/Ex) + (1 — k) cosh™'(1/En) + ixm,
= cosh~'(1/m) + ixw, 4.9)
. 1 + E5ém . 1-€B§N_._,l
k sin~! (W) + (1 — k) sin”! <—§B — §~> = sin (n) (4.10)

The physical boundary conditions transform into the following conditions on the
real axis in the {-plane:

—w<E< =&y Ww=0, owleg = 0, “4.11)
—tm<E<I: awlem = 0, 4.12)

: _ _(cré/wn w _
1 < &< Ep: Tt %= O (4.13)
Ep<t<o w=0, awloE = 0. (4.14)

With w = Re F({) and F'({) = ow/oE —~ i(dw/am), the discontinuity in w at £p
suggests a simple pole in F'({) at that point, while the changes in F'({) from real to
imaginary suggest ({ — 1)~"2({ + &)~ ', in the latter expression negative exponents
ensure that points of bounded behavior in the physical plane retain the same bound-
edness in the {-plane. The following expressions satisfy these conditions, as well as
the conditions outlined with respect to (2.13):

iA“(Ep — 1)"(Ep + EM)'?

Fi® = T g + e - &) @.13)
o ABUIL + CUIE)
PO =g + g™ (4.16)

Achenbach[32] formulated the problem under consideration for the particular case
u = o and 1{ = 0in (4.1) and (4.2), respectively. Unfortunately the analytic function
F'(L) chosen by Achenbach[32] did not include F3({) and is thus not complete, as
revealed by Burgers and Dempsey([25].

F1(Y) satisfies the boundary conditions; the jump in particle velocity at £ = &5
gives A? = —(ct§/wm)n/(n® — 1)"2, The integration of F3({) gives rise to an arcsin term
which in turn gives rise to a logarithmic singularity in the particle velocity near the
crack tip; to exclude this singularity it is necessary that B® = C%(1 — Eam)2Ep. To
evaluate the constant C? observe that the regular part of 74, in (2.19) for 8 = km and
(r — vt) — 0% must be equal to the loading on the new crack faces for 6 = xw and

(r — vt) — 0. Thus, for the loading given in (4.2), and noting that C“ is present in
F (D),

Fy(f) = iA“C(L — 12 + &m)"?/EmL, @.17)

and therefore also in J2e, defined by (2.21), the equation for C* is given by the regular
or nonsingular part of 74, (2.19) as

Jae(v, k) + Lig(v, kW) + 75, = — 17, (4.18)

By (4.5), 75, = O for | kw | < w/2 + sin~'(1/n).
Before determining the stress intensity factor as defined by (2.22), it is necessary

SAS 22 3-K
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to calculate the following: immediately ahead of the crack tip { ~ mas (r — vt) - 0*
on § = km, where 1 1s determined from (2.11), (2.12) as

7 = 20r — vut(l = m*)"? w,. (4.19)

The constant w; is defined 1n (2.10) and can be found by expanding (4.7) in a Taylor
series about the crack tip { = 0; it ts found that

w2 = k(1 — &)/ + (1 — k) (1 ~ ER)/ER. (4.20)

A quick examination of (4.17), (4.19) and (2.19) verifies that the appropriate crack-tip

singularity (r — v1)~"? is indeed present in the first term. Finally, the stress intensity
factor is given by

Kfu(k) = 18(c)"? C* wi? n(1 — m***f{m(n® — 1)mér}'?, (4.21)

where C“ is defined by (4.18).

The mapping in (4.7) can be inverted for two specific cases k = 0 and k = 1/2;
in other words, { (x = 0) and { (x = 1/2) can be written explicitly in terms of s and
0. Analytical solutions are thereby feasible and are presented below. Burgers and Demp-
sey[25] in a similar treatment obtained analytical solutions for the particular case 1 =
= and 7{ = 0in (4.1) and (4.2), respectively.

Consider first the specific case when the crack propagates in its own plane (k =
0). The solution of (4.8)~(4.10) gives

k = 0: Ev =0, Exn=m, & = (m + ni(1 + mn), 4.22)

and the inversion of (4.7) gives
K = 0 { =[1 + mcosh(y — tm))/im + cosh(y — )], (4.23)

where y = B + i0 = cosh™'(c/s) + i8. For 8 = 0 and r > vt, (4.23) gives { =
— (s/e = m)/(1 — ms/c). From the latter expression it is apparent that C* = 0 in (4.16);
otherwise 7, would be more singular than (r — vt)~ "2, In (4.15), A“ has the same value
as found previously, while (4.16) gives Fo({) = iA“B“2({ — 1)'”2/¢'”2. The final expres-
sions for the shear stress 1o, ahead of the crack tip and the stress intensity factor are
obtained from (2.19) and (2.22), respectively, and are

] 2 « m+n "2 a o 172 - v
:_o;o(r >ut,8 =0) = (;) {[To (l " n) - (16 — T)m (r — vt)

t — rlc\'"?
+ (1§ — 7¢) tan~! ( )
rlv —t

2 s, o\ 12
- 7§ tan™! [(m + n) (” r) ]} . (4.24)
1 +n r—ut

2 172
0) =2 (—) ()21 — m)'”?
b

12
x {Tz; ("’ s ") e T'.')m'“} . (4.25)
Il +n

For u — = and appropriate values for 7 and 7{ the expressions (4.24) and (4.25) agree
with those found for three different loading cases examined by Burgers and Demp-
sey[25]. From energy considerations, the stress intensity factor in (4.21) as k — 0 1s
expected to be 27 ' times that given n (4.25); that is, Kfi (k = 0) = Kfy (x = 0)2'7.

fu(x
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For crack branching normal to the primary crack plane (x = 1/2), the mapping
equations (4.8)-(4.10) give

k = 1/2: tm=Ev=m, &g =h={nr0 - m?) + m}", (4.26)

and the inversion of (4.7) gives

k = 1/2: 2 =1-(1 - m?tanh*(y — im). 4.27)

Ahead of the crack tip (8 = /2, r > vr) (4.27) gives { = i(s*/c? — m»)"2/(1 — s%/c?)"?,
the latter expression and (4.17) confirm that the appropriate crack-tip singularity 1s
incorporated in 7. as given by (2.19). The shear stress ahead of the crack tip is given

by
™ 9112 h - m\"*
a > = = = = d - 12
5 (r v, 8 2) m {TO(I m) (h + l)
£V 12 ct —r\'"”
! r— vt
iy ian-1 et = N\ [y + m\'?
0 r—ut y +1
12 1”2

-1 ct - r y - m

fan [(, - vt) (y - l) ]}

12
-7 (-2-) tan~! (l r/() , (4.28)
T rlv — t

+

+

where

(] - m)l/Z{(y + m)l/2(y + 1)!/2 + (y - m)llz(y _ l)uz}

Y = ,“2|/2(h _ m)IIZ(h + ])1/2 N (4.29)

in which
y = nl(n* — )72, (4.30)

The Mode I1I elastodynamic stress intensity factor defined in (2.22) is therefore given
by

h — 172
i (K = %) = (Ct)ll2 (ﬂ—zl/i) (] - m)uz {78(1 _ m)l/2 (h +T) + 1“1’2”2”1”2} )

4.31)

Symmetrical deformations

Consider now dynamic loading conditions that cause symmetric deformations

about the original crack plane. The boundary conditions for this problem are given by
(3.12), (3.14), (3.15) and

6= txw, r>0: Te- = FTIH( — rlv). (4.32)

Only a cylindrical wave is generated by this loading.

The upper half of the physical domain (0 < 8 = =, s < ¢) is mapped into a semi-
infinite strip (0 =< 0 = 1, 0 = B < =) in the y-plane (Fig. 3). The boundary conditions
in the y-plane along EN, DN, DM and AM in Fig. 3 are given by aw/60 = 0; along AE,
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w = 0 and w/38 = 0. This strip is then mapped to the upper half of the {-plane (Fig.
4) by the transformation in (4.7). The boundary conditions in the {-plane for | £ | = I,
m = Oare given by w = O and ow/aE = 0;for | £ | = 1, m = 0 (AE), awlom = 0.

Based on considerations similar to those following (4.11)-(4.14), the following
expressions are deduced:

Fi@) = 0, (4.33)
IA*(BSIL + C*I(%)

Fy) = (Cz — l);/z ’

(4.34)

where here A° is introduced for convenience: A* = cri/pn. The integration of F3({)
gives rise to a term —iB* sin™'(1/{), which in turn gives rise to a logarithmic singularity
in the particle velocity near the crack tip (that is, as r — vt — 07); to exclude this
singularity it is necessary that B* = 0. The final expression for F,({) is

Fa2(0) = iA*C((® - 1)'2/¢. (4.35)
The evaluation of C* follows from the fact that the nonsingular part of 7. in (2.19) for
6 = kmwand (r — vt) > 0" must equal the loading on the new crack faces for 8 = xw

and (r — vt)— 0~. Since F,({) = 0 and 7§, = 0 for | 8 | = w by (3.14), the equation
used to determine C* quickly follows from (2.19) and (4.32) as

Jogly, k) = - 7i. (4.36)

Ahead of the crack tip (8 = km, r > vt) { ~ in, where n? is again given by (4.19) and

(4.20). The first term in (2.19), the definition (2.22), and the expression for Fa({) in
(4.35) are used to determine that

Kin(k) = 7i(c)'2C*wi?(1 — m*P4/(nmm)"2. 4.37)

For crack branching normal to the primary crack plane (x = 1/2), (4.7) can be

inverted to give (4.27), and an analytical solution can be obtained. From (4.36) it is

determined that

C* = — mm?/gE(q), (4.38)

where g = (1 — m?)'2, The final expressions for the stress ahead of the crack tip and
the stress intensity factor are found from (2.19) and (4.37), respectively, as

_om\ _ Atrlen) (22— 122 ~ v3)'2 — E\, g)}
g:"ffz (r >upt, 8 = 2) = T3 E@ ., {4.39)
in which A = sin="{(c?f* = r¥)"2/r? - v**)"?}, and
Kin(k = 112) = 7i(ct)"?w'"2m'?(1 — m?*)'\?/E(q). (4.40)

In the above expressions, E£(*) and E(-, *) are, respectively, complete and incomplete
elliptic integrals of the second kind (Gradshteyn and Ryzhik{38]).

It is worthwhile at this point to consider for a moment the antiplane strain problem
of skew crack propagation into a half-plane (—= < x < %, 0 < y < x) at an angle 6
= k7 with the loading: 7¢, = Frifor0<r<ut,and 15, = Oon 8 = 0, wforr > 0.
Obviously, these boundary conditions are identical to those stated for the symmetrical
bifurcation problem with symmetrical deformations that has just been examined here.
Therefore, the expressions in (4.35) and (4.37) apply equally to the problem just
described.
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Symmetric crack bifurcation under stress wave loading

The problem of crack bifurcation under stress wave loading is discussed in Section
3. The Mode 111 elastodynamic stress intensity factors for the superposition problem
shown in Fig. 2(b) and defined in eqns (3.4)-(3.6) are quickly obtained for symmetric
crack bifurcation with equal crack-tip velocities. In this instance, the solutions of the
antisymmetric and symmetric problems defined in Section 3 are required. These so-
lutions are provided in this section, and by comparing (3.4) and (3.10) with (4.1) and
(4.2), respectively, as well as (3.13) with (4.32), it is immediate that

Kfi(k) = Kiu(k) + Kin(x), (4.41)
and
Kfu(x) = Kfu(x) — Kin(x), (4.42)

so long as 7§ = 10 cos(aw), 77 = 1o cos(amw) cos(kmw), T} = To sin(aw) sin(xw), and n
= 1/sin(aw). The analytical solutions Kfj;(x = 1/2) and Kji,)(x = 1/2) provided in (4.31)
and (4.40), respectively, provide in turn analytical expressions for Kfi(x = 1/2) and

Kfu(k = 1/2). A noteworthy feature of the above information is that for normal
incidence

a=0: Kfix) = Kfu(k) = Kfu, (4.43)
with 1§ = 79, T = 1 cos(kw), 7} = 0 and n — «; for grazing incidence
a = 0.5: Kfi(k) = — Kfu(x) = Kin(x), (4.44)

with 1§ = 7¢ = 0, 1§ = 7o sin(kw) and n = 1. The dependence of the elastodynamic

0000 oS
X

Fig. 5. Symmetric crack bifurcation (x; = —x2 = x, v; = v2 = v): (a) a = 0 (normal incidence),
Kfli = KB vs k; (b) « = 0.5 (grazing incidence), KR = —Kfi vs .
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Fig 6 Symmetric crack bifurcation (xy = —x2 = k, vy = v3 = v), @ = 0375 (@) K{}i vs «.
(b) Kfi vs k.

stress intensity factors stated in (4.43) and (4.44) on the angle of branching (xm) 15
shown in Fig. 5 for different values of m = v/c. The dependence of K{}1(k) and K{;(x)
as stated in (4.41) and (4.42) is shown in Fig. 6 for a = 0.375.

5 ASYMMETRIC CRACK BIFURCATION

The superposition problem defined in (3.4)-(3.6) is now examined for geometrically
asymmetric bifurcation and different crack propagation velocities. As outlined in Sec-

A0
3
T N
av+n24iB
N
Klﬂr------- =~
g
'Y S—
C M
Kz‘l'l’ ---------------- e =
-ar-w2i6
- F L

Fig. 7. The v-plane for asymmetric crack bifurcation. The boundary conditions along EN, DN,
DM, CM, CL and FL are given by 3w/oé = 0; along fG, w = —cro/p; along GB, w = 0, along
BE N W= CToi pos
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n

¢ Fr L ¢ Im o W s K
LN T A WY T
Fig. 8. The {-plane for asymmetric crack bifurcation The boundary conditions along EBGF
are given by aw/a = 0: along FLCMDNL owlivg = 0

£
;)

tion 2 this asymmetric problem is mapped from the physical domain (-7 <8 < =,
5 = ¢) into a semi-infinite strip (— 7 = 6§ < m, 0 < B < =) in the y-plane (Fig. 7). This
strip is then mapped to the upper half of the {-plane (Fig. 8) by the Schwarz-Christoffe!
transformation (Kuo{39])

v = (ky — k) cosh™! (%) + (1 = xy) cosh™! (lg—_&g:vNC)

+ (I + k) cosh™! (%—E—%:C) + im, G.h

where the points €., £n, ¢, &b, &5 and £ can be found for given values of x,, x2,
v/c and v,/c by examining the changes in imaginary parts at L, M and N and from the
mappings of points B, C, D and G.

In the {-plane the boundary condition on w(§, n) corresponding to those in the
v-plane are, at = Q:

—w<E< —¢g: w=0, owleg = 0, 5.2)

—fc<E< -1t w= — crlp, Wt =0, (5.3
~1<E<Tl: awlom = 0, (5.4)

1 < &< ép: W = cTo/p, owlet = 0, (5.5)

Ep<t<o® w=0, awlot = 0. (5.6)

The discontinuities in w at £ = —&; and £ = &5 suggest simple poles in F’'({) at

these points, while the changes in F'({) from real to imaginary along | £ | =< I indicate
that the term ({* — 1)~'? is needed. The following expressions satisfy the above con-
ditions and incorporate the singular behavior at the two crack tips:

A @ -7 B(gﬁ—n"z]

F“"‘(:f—l)'”[ [+t T l-& | (-1
oA E D H G

B =@ [c—§9+<g~§n)=+;+§c+<c+§c)=]‘ 5-8)

Achenbach[31] formulated a similar problem to that considered above. Unfortunately,
the analytic function F'({) chosen in [31] did not include F2({), thus precluding a com-
plete analysis.

The task remaining is to determine the constants A, B, D, E, G, H such that the
conditions stated in (3.4)-(3.9) and in (5.2)~(5.6) are satisfied. After eqns (5.7) and (5.8)
are integrated, the conditions w = —cro/ufor — € < €< -1, w = crofpfor 1 < &
< & determine that A = cro/uw and B = —1. To preclude terms giving rise to log-
arithmic singularities in the particle velocity in the vicinity of the crack tips, it is nec-
essary that DEp/(1 — £3) + E = 0 and Géc/(1 — &) — H = 0. The latter conditions
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negate any arcsin terms in F2({), which is finally given by
Fo0) = iA@ - DDA - £5) (€ — &) + G = €Y (L + Ec)}. (5.9)

The remaining constants D and G have to be determined on the basis of considerations
of the shear stress 7o, in the plane of, and ahead of, each crack tip. The regular part
of 1o in (2.19) for (r — vyt) — 0%, 6 = k=, for instance, must be equal to the loading
on the new crack face for (r — vy#) = 07, 8 = k7 (the medium ahead of BG in the
superposition problem is undisturbed; therefore 13, = 0 for the range of branching
angles considered). Thus, noting (2.19), (2.21), (2.15), (5.9), (3.5) and (3.6), it is foun

that for 6, = x)m and 6; = k2w '

1

J20(vp, Kpm) + L1e(Up, Kp,T) = —7T¢ COS(T — KpT) (r =12, (5.10)

where it is to be noted from (5.9) that the constants D and G are present in J,e; (5.10)
gives two equations in these two unknowns. The elastodynamic Mode 111 stress in-
tensity factors follow from the singular part of the stress (2.19) in the planes 8, = k; 7
and 0, = ko, respectively. Noting (2.22) we find that

Kfli = — 7o(ct)"? D[wf(1 = mi)**fmm\(1 - £B)I'?, (5.11)
Kfi = = 7(ct)"”? Glof(1 — m3)*/mma(1 - €8)]'7, (5.12)

in which m, = v,/c (p = 1, 2) and w¥ for this problem {see (2.10)] is given by

p___ 1 [x. —k2 (1-xk)A - (1 +k)(1 - gi)'ﬂ] 513
T L En-0r T G-ty | GV
K&
Tolct)”

(a)

0933

.5

Fig. 9. Asymmetric crack bifurcation with ki = 0, k2 = x, w/c = 0.5 and a = 0 (normal
incidence): (a) Kf: vs « for different values of va/c; (b) Kfy; vs x for different values of va/c.
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5

To(et) 2

0%

o)

os;

Fig. 10. Asymmetric crack bifurcation with x; = 0, x3 = x, vi/c = 0.5, and a = 0 (normal
incidence): (a) K}, vs x for different values of vo/u;1; (b) K vs « for different values of va/v;.

va/vied 99
(s}

10
»

.0 o5

K&
o)

o

-0.53 0.0 0.3
[ 3

Fig. 11. Asymmetric crack bifurcation with x; = 0, k3 = &, vy/c = 0.5, and a = 0.375. (a)
Kf: vs x for different values of w/v;; (b) Kfiy vs x for different values of w/v,.
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while the equivalent expression for w$ 15 the same as (5.13), except that £, must be
replaced by —é&c.

The dependence of the stress intensity factors Kf} and K, on the two crack-tip
velocities, the two branching angles, and the angle of wave incidence is now investi-
gated. A general analysis is not possible. Rather, the sensitivity of one branch’s crack-
tip stress intensity factor to the relative velocity and orientation of the other is examined
here. The particular geometry chosen is that of x; = 0 and k, = « [see Fig. 2(b)]; the
fact that a propagating crack makes several usually abortive crack branching attempts
after reaching a certain stress intensity prompted this choice.

In Figs 9 and 10 crack-tip D models the continued planar propagation of the primary
crack at a velocity of v, = 0.5¢ under normal wave incidence (@ = 0). Crack-tip C
models the attempted branching. The role played by a nonzero angle of wave incidence
is shown in Fig. 11.

6 CONCLUSIONS

For symmetric crack bifurcation Burgers[27] numerically solved the following anti-
symmetrical problems—referring to (4.1) and (4.2)—Case 1: 1§ = 79,7 = 0, u — =;
Case 2: 7§ = 0,7{ = 7o; Case 3: stress wave loading with normal incidence. The results
obtained in [27] revealed that the stress intensity factor Ki),(x) in (4.21) for loading
Case 1 reaches a maximum with k = 1/2 for all velocities. By eqns (4.31) and (4.43),
Kfi = Kfu = 70(ct)?2(1 — m)/m'? in this instance. Achenbach[32] treated loading
Case 1 also and used his solution to examine the bifurcation of a propagating crack.
A reinvestigation of the running crack analysis in [32], after noting that his stress
intensity factor K is defined here by (mK/cto) = Kiy 7'2 m'2/xo(ct)'2(1 — m?)"4, gives
different results for the velocity at which bifurcation occurs and the angle of bifurcation,
viz. 0.6¢ and m/2, respectively.

For asymmetric crack bifurcation under stress wave loading, Figs 9 and 10 reveal
that the stress intensity factor of the unbranched crack-tip D is not significantly influ-
enced if the branching velocities of crack-tip C are less than its own velocity (0.5¢);
for branching velocities of crack-tip C greater than that of the crack-tip D propagating
in a planar fashion, K}, is greatly decreased. A branch cannot propagate almost parallel
to the primary crack unless it has a velocity exactly equal to that of the primary crack.
If the branching velocity is greater than that of the primary crack and small branching
angles are involved, Kfj; is significantly reduced.

The above study is similar in spirit to that of the elastostatic investigations in [17,
34]. The conclusion here is that continuous branching with very little crack speed
alteration is key to successful crack branching. From Fig. 9(b), Kfj, has two maxima
for a crack-tip velocity equal to that of crack-tip D (v; = v, = 0.5¢), which suggests
that bifurcation, with continued planar crack propagation also, would occur in the model
studied (for normal wave incidence) at = 12°. The amazingly sensitive interaction dis-
played in the above antiplane strain studies is likely to be a feature also of plane strain
crack bifurcation.
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